CHAPTER

PL/SQL
FUNDAMENTALS
AND ITS STATEMENTS

| CHAPTER OBJECTIVES
. In this chapter you will learn:
w SQL Vs PL/SQL
» Advantages and Architecture of PL/SQL
» Features of Oracle
» Structures of PL/SQL Language PL/SQL Languages Elements
» Data types and Declaration
» Variable Attributes like %TYPE and % ROWTYPE ‘
»» Control Statements like Conditional Control, Iterative Control and Sequential Control
. Conditional Control statements like IF-THEN, IF- THEN - ELSE and IF-THEN-ELSIF
» Iterative Control statements like Simple Loop, While Loop and For Loop
» Sequential Control statements like GOTO and NULL

30.1 INTRODUCTION

PL/SQL stands for Procedural Language/Structured Query Language. PL/SQL is an
extension of the SQL language. We can say it is the superset of the Structured Query
Language specialized for use in the Oracle database. Because it is Procedural language, it
eliminates many restrictions of the SQL Language. With the use of SQL user can only
manipulate the information stored into database. User can perform very basic operations such
as selecting the information from some prefabricated tables, inserting information into those
tables, updating the information stored in table and also occasionally used to delete information
from these tables. PL/SQL extends SQL by adding control structures found in the other
procedural languages. Procedural constructs blend seamlessly with Oracle SQL, resulting in
a structured, powerful language. PL/SQL combines the SQL’s language’s ease of data
manipulation and the procedural language’s ease of programming.

PL/SQL FUNDAMENTALS AND ITS STATEMENTS m

30.2 SQL VS PL/SQL T T
Some of the differences between SQL and PL/SQL are highlighted and shown below:

SOL PL/SQL

SQL does not have any procedural capabilities. | ORACLE has provided all procedural
By procedural capabilities here we mean that capabilities in PL/SQL to support data
there is no provision of conditional checking, | filtration. '

looping and branching, which are very essential
for filtration of data before entering it into
database.

SQL statements are passed to oracle engine | |n PL/SQL it sends the bundle of SQL
(server) one at a time. Therefore each time for | statements to the oracle server in the form
each statement a call is made to the server of BLOCK and hence calling the server
resources and these resources are opened and resources only once for that block even if
closed every time. And hence generating | that block is having more than one SQL
network traffic resulting in slow processing. statement. After processing all the
statements in a block ORACLE server closes
the resources results in faster execution of
SQL statements in a PL/SQL block.

In SQL there is no provision of handling errors | Where as in PL/SQL we can program the
and exceptions, which means that if any SQL | block of statements to handle the errors in
statement fails to execute, then oracle gives | such a way that if any of the statement fails
its own error messages and error code which | to execute then we can display user-friendly

may not be user friendly. .| appropriate messages.

SQL does not support PL/SQL statements PL/SQL supports SQL statements in its
block.

We cannot store the intermediate results of a | PL/SQL supports declaring the variables so

query in variables. as to store intermediate results of query for

later use. These variables can be used any
where in any other SQL statement of same
PL/SQL block.

PL/SQL is a completely portable, high performance transaction processing language,
which offers the following advantages:
+ Supports the declaration and manipulation of object types and collections.
+ Allows the calling of external functions and procedures.
+ Contains new libraries of built-in packages. A package is a file that group functions,
cursors, stored procedures, and variables in one place.

+ Triggers: A trigger is a PL/SQL program that is stored in the database and executed
immediately before or after the INSERT, UPDATE, and DELETE commands.

+ Cursors: Oracle uses workspaces to execute the SQL commands. Through PL/SQL
cursors, it is possible to name the workspace and access its information.

+ Support for SQL: PL/SQL allows us to use all the SQL data manipulation commands,
transaction control commands, SQL functions (except group functions), operators

m . SIMPLIFIED APPROACH TO DBMS

and pseudocolumns, thus allowing us to manipulate data values in a table more
flexibly and effectively.

The PL/SQL engine executes the PL/SQL Blocks. The PL/SQL engine executes only
the procedural statements and sends the SQL statements to the SQL statement executor in
the Oracle Server. The PL/SQL engine resides in the Oracle Server. The call to the Oracle
engine needs to be made only once to execute any number of SQL statements, if these SQL
sentences are bundle inside a PL/SQL block. Since the oracle engine is called only once for
each block, resulting increased speed of processing as compared to call for each SQL sentence.

APPLICATION ORACLE
PROGRAM :
Server

= [[k

A
PL/SQL
Block A PL/SGL Procedural
BLOCK ["procedural Statement
\EEE Executor
s
S : 4

L\/
K_—[SQL Statementexecutor i——_’

Figure 30.1 PL/SQL Architecture

30.5 STRUCTURE OF PL/SQL LANGUAGE

PL/SQL is a block structured language with procedural techniques with features like
logic building, looping, error-handling mechanisms, data-types, variables, subroutines, procedural
constructs. Block is smallest piece of PL/SQL code which groups logically related declarations
and statements. Declarations are local to the blocks and cease to exist when block completes.

PL/SQL block consists of three sections:

Declare

- Used to declare variables and constants
- Is an optional section

- Is also used to declare type declarations, PL/SQL procedures and functions, which
are local to module

PL/SQL FUNDAMENTALS AND ITS STATEMENTS [645 |

Begin

- Is the executable section containing the code, which is executed when block is run
- Is compulsory

Exception

- Handles exceptions occurring during processing.

- Used to place predefined Error-handlers or user defined exceptions.

- Code contained in this section is executed only when an error occurs.

- Is an optional section

A PL/SQL statement is terminated with the END statement and a semicolon. Every PL/
SQL program must consist of at least one block, which may contain any number of nested
sub-blocks. Blocks can be nested in executable and exception-handling parts of a PL/SQL
block or subprogram but not in declarative part.

Declare

- Declare variables and constants
Begin

- Process SQL statements
Exception

- Error handlers
End;

30.6 PL/SQL LANGUAGES ELEMENTS

The PL/SQL essential language elements can be grouped as follows:

+ Operators, indicators and punctuation

+ Identifiers 4+ Literals
+ Comments + Expressions and comparisons
+ Data types and Declarations

30.6.1 Operators, Indicators and Punctuation
In PL/SQL, these symbols are divided into a few groups:
Arithmetic operators
Used to perform arithmetic operations.
Examples: +, -, *, /, ** (Raises the first operand to the exponent of the second)
Expression operators
Used to create assignment, range and string catenation expressions.
Examples : =(Assignment operator, A:=3)
.. (rangc operator , 1..4)
Il (Concatenates two or more strings, ‘dav’Il’college’)

m SIMPLIFIED APPROACH TO DBMS
30.6.2 Identifiers
Identifiers are named conventions used for variables, constants and oracle objects like

~ tables, procedure, functions, packages, trigger and cursors etc.

30.6.3 Literals

It specifies an exact value in a program. It is an explicit numeric, character, string or
Boolean value not represented by an identifier. Literals are used to initialize constants, variables
and other data values. '

Examples: 10,-19, 9.99 (Numeric literals)
‘a’, ‘A’ ‘7, ¢ ¢, ¢) (Character literals)
‘abe’, ‘jack’, 4§ill’, ‘1234 (String literals)
TRUE and FALSE (Boolean literals)
30.6.4 Comments

Comments can be single line or multiple lines.

Single line comment:

Begins with — — can appear within a statement, at end of line.
Example : a number; — — variable declartion

Multi line comment

Begin with /* and end with a an asterisk-slash (*/).

Example : /* statements to select rate and quantity into

variables and calculate value */

30.6.5 Expressions and Comparisons

Expressions are constructed using operands and operators. An operand is a variable,
constant, literal or function call that contributes a value to an expression.
#
Operator Precedence
The operations within an expression are done in a order which depends on operator
precedence. Operators with higher precedence are applied first, and those with same precedence
are applied in no particular order. Parenthesis can be used to control the order of evaluation.

Table shows Operator Precedence:

Operator Operation
** NOT Exponentiation, logical negation
+, - Identity, negation
0l Multiplication, division
e || Addition, subtraction , concatenation
= 1=,<,>,<=,>=,1S,NULL,LIKE, Conijunction Inclusion
BETWEEN, IN, AND, OR

PL/SQL FUNDAMENTALS AND ITS STATEMENTS 647
30.6.6 Data types and Declaration

Every constant and variable has a data type, which specifies a storage format, constraints,
and valid range of values.

Some commonly used data types of PL/SQL are:

4+ NUMBER + " CHAR
+ VARCHAR + DATE
4+ BOOLEAN + LONG
4+ LONG RAW + LOB

Number Type
We can use the NUMBER datatype to store fixed-point or floating-point numbers of
virtually any size.
The syntax follows:
<variable_name> NUMBER|(precision,scale)];
To declare fixed-point numbers, for which you must specify scale, use the following form:
' NUMBER (precision,scale)

To declare floating-point numbers, for which you cannot specify precision or scale
because the decimal point can “float” to any position, use the following form:

NUMBER
To declare integers, which have no decimal point, use this form:
NUMBER (precision) — — same as NUMBER(precision,0)
How Scale Factors Affect Numeric Data Storage:

Input Data Specified As Stored As
1,456,123.89 NUMBER 1456123.89
1,456,123.89 NUMBER(*,1) 1456123.9
1,456,123.89 NUMBER(9) 1456124
1,456,123.89 NUMBER(9,2) 1456123.89
1,456,123.89 NUMBER(9,1) 1456123.9
1,456,123.89 NUMBER(6) (not accepted, exceeds precision)
1,456,123.89 NUMBER(7,-2) 1456100
Character Types

Character types allow you to store alphanumeric data, represent words and text, and
manipulate character strings.

CHAR

We can use the CHAR datatype to store fixed-length character data. The CHAR datatype
takes an optional parameter that lets you specify a maximum length up to 32767 bytes.

The syntax follows:
<variable_name> CHAR[(maximum_length)];

648 SIMPLIFIED APPROACH TO DBMS
We cannot use a constant or variable to specify the maximum length; you must use an
integer literal in the range 1 .. 32767.
If you do not specify a maximum length, it defaults to 1.

VARCHAR2

Used to store variable length character data i.e. it stores a string upto the length of the
variable unlike CHAR datatype, which stores sting variable upto the maximum length of the
variable. The maximum length can be specified upto 32767 bytes. For example: If data type
of address field is declared as VARCHAR(40) and address information of a particular record
complete in 20 characters, then remaining 20 characters space is not padded with blank
characters and memory space of 20 characters is used for some other purposes and not
wasted as padded with blank characters.

LONG

The LONG datatype used to store variable-length character strings. The LONG datatype 1s
like the VARCHAR? datatype, except that the maximum length of a LONG value is 32760 bytes.

Syntax: <variable_name> LONG(maximum_length);

LONG columns can store text, arrays of characters, or even short documents.

BOOLEAN

The BOOLEAN datatype used to store the logical values TRUE and FALSE and the
non-value NULL, which stands for a missing, inapplicable, or unknown value.

Syntax: <variable_name> BOOLEAN,
DATE

The DATE datatype used to store fixed-length date/time values. DATE values include
the time of day in seconds since midnight. The default might be ‘DD-MON-YY’, which
includes a two-digit number for the day of the month, an abbreviation of the month name, and
the last two digits of the year.

Syntax : <variable_name> DATE;

RAW

The RAW datatype used to store binary data or byte strings. For example, a RAW
variable might store a sequence of graphics characters or a digitized picture. Raw data is like
VARCHAR? data, except that PL/SQL does not interpret raw data.

Syntax : <variable_name> RAW (maximum_length);
The maximum width of a RAW database column is 2000 bytes.
LONG RAW

We can use the LONG RAW datatype to store binary data or byte strings. LONG
RAW data is like LONG data, except that LONG RAW data is not interpreted by PL/SQL.
The maximum length of a LONG RAW value is 32760 bytes.

LOB Types

The LOB (large object) datatypes BFILE, BLOB, CLOB, and NCLOB allow to store
blocks of unstructured data (such as text, graphic images, video clips, and sound waveforms)
up to four gigabytes in size. And, they allow efficient, random, piece-wise access to the data.

PL/SQL FUNDAMENTALS AND ITS STATEMENTS | 649 |

30.7 VARIABLES AND CONSTANTS

The PL/SQL language allows the declaration of variables and constants, which can be
used in the SQL commands contained in the PL/SQL block. All the variables and constants
used must be declared.

Variables

We can declare variables in the declaration section part and use elsewhere in the body
of a PL/SQL block. The following example shows how to declare a variable

Example : age number (4) ;

A variable named age has been declared with a width of 4 bytes. Similarly we can
declare a variable of Boolean data type. Example

Done Boolean ;
Variable Value Assignment
There are two ways to assign values to a variable. These are:
With the use of assignment operator
+ With the use of SELECT INTO clause to get value from the database item

With the use of assignment operator

In this the assignment operator “ : = is used to assign a value to a variable. As shown below:
8 =h*¢c:

increase : = sal * 1.5 ;

OK : = false ;

We can also use substitute variables for the assignment to variables. Substitute variables
are those whose values are entered at run time during execution of the PL/SQL block. There
is no need to declare the substitutable variables as shown below:

a: = &enter_number;

Here, enter_number is a substitute variable whose values is entered during execution,
and substituted at the place of &enter_number as shown below:

Enter the value of enter number: 3
Then, 3 is substituted at the place of &enter _number
ay = 3:
Commonly, we can use the same substitute variable name as main variable name, as
shown below:
a: = &a;
b: = &b
With the use of SELECT INTO clause

The second way to assign values to variables is to use the SELECT command to assign
the contents of the fields of a table to a variable:

SELECT sal INTO s FROM emp where empno = 100;

m ' SIMPLIFIED APPROACH TO DBMS

In this case, variable ‘s’ will get the value from sal column of emp table for empno 100.

NOTE:- Select statement must return a single record; if it returns no record or more than one
record then an error is raised.

Example 30.1: Write a PL/SQL code to calculate total sal of emp having
empno 100. Table emp1 having following columns

empno, ename, bp, da, hra, total.
Solution:

DECLARE
E NUMBER(3);
D NUMBER(3);
H NUMBER(3);
B NUMBER(3);
T NUMBER(3);

BEGIN
SELECT BP,DA, HRA INTO B, D, H FROM EMP1 WHERE EMPNO=100;
T : =B+D+H;
UPDATE EMP1 SET TOTAL=T WHERE EMPNO=100;

END;

Constant Declaration

It may be useful for you to declare constants in the declaration section of the PL/SQL blocks
developed as well. Constants are named clements whose values do not change. For example, pi
can be declared as a constant whose value 3.14 is never changed in the PL/SQL block.

The declaration of a constant is similar to that of declaration of a variable. We can
declare constants in the declaration section and use it elsewhere in the executable part. To
declare the constant we must make use of the keyword constant. This keyword must precede
the data type as shown below.

pi constant number : = 3.14;

In the above example, we have assigned to the constant named pi. After this, no more
assignment to the constant is allowed, i.e. 3.14 will be the initial and final value to the constant.

All the declaration must end with a semicolon (;).

30.7.1 Variable Attributes

Attributes allow us to refer to data types and objects from the database. PL/SQL
variables and constants can have attributes. The following are the types of attributes, which
are supported by PL/SQL.

4+ %TYPE 4+ %2ROWTYPE

%TYPE : In general, the variables that deal with table columns should have the same
data type and length as the column itself. %type attribute is used when declaring variables
that refer to the database columns. When using the %type keyword, all you need to know
is the name of the column and the table to which the variable will correspond.

PL/SQL FUNDAMENTALS AND ITS STATEMENTS 651
Example
DECLARE
eno emp.empno%type; — eno of same data type and width as empno of emp table
salary emp.sal%itype;
BEGIN

The advantages of using %TYPE are as follows:
We need not know the exact data type of the column empno and sal.

+ If the database definition of empno and sal is changed, then, the data type of eno
and salary changes accordingly at run time.

% ROWTYPE : %rowtype attribute provides a record type that represents a row in
a table. For example, if the EMPLOYEE table contains four columns—EMPID, LASTNAME,
FIRSTNAME, and SALARY—and you want to manipulate the values in each column of a
row using only one referenced variable, the variable can be declared with the erowtype
keyword. Compare the use of %rowtype to manual record declaration:

DECLARE

my_employee employee%ROWTYPE;
BEGIN
END;

To refer empid of employee table we have to use my_employee.empid, similarly for
lastname we have to use my_employee.lastname.

The other way is:
DECLARE
my_empid employee.empid%TYPE;
my_lastname employee.lastname%TYPE;
my_firstname employee.firstname%TYPE,
my_salary employee.salary%TYPE;
BEGIN
END;
Example 30.2: Write a PL/SQL code to calculate total sal of emp having
empno 100. Table emp1 having following columns

empno, ename, bp, da, hra, total. Use %TYPE and %ROWTYPE for variable
declaration.

SIMPLIFIED APPROACH TO DBMS
Solution:

DECLARE
B EMP1.BP%TYPE;
D EMP1.DA%TYPE,
H EMP1.HRA%TYPE;
T EMP1.TOTAL%TYPE;
BEGIN
SELECT BP,DA, HRA INTO B, D, H FROM EMP1 WHERE EMPNO=100;
T:=B+D+H;
UPDATE EMP1 SET TOTAL=T WHERE EMPNO=100;
END;

With the use of %ROWTYPE:

DECLARE
REC EMP1%ROWTYPE;
BEGIN
SELECT * INTO REC FROM EMP WHERE EMPNO=100;
REC.TOTAL:=REC.BP+REC.HRA+REC.DA;
UPDATE EMP1 SET TOTAL=REC.TOTAL WHERE EMPNO=100;

" END;
30.8 DISPLAYING USER MESSAGES ON THE SCREEN
PL/SQL require a method through which messages can be displayed to the user on

the monitor.

DBMS_OUTPUT is a package that includes a number of procedure and functions that
accumulate information in a buffer so that it can be retrieved later. These functions can also
be used to display messages to the user.

PUT LINE is a procedure used to display message to the user on monitor. It accepts a
single parameter of character data type. If used to display a message, it is the message ‘string’.

Example:
DBMS_OUTPUT.PUT_LINE(‘ENTER THE NUMBER’);
DBMS_OUTPUT.PUT_LINE(‘Result of Sum operation is: * Il sum);

To display messages to the user the SERVEROUTPUT should be set to ON.
SERVEROUTPUT is a SQL*PLUS environment parameter that displays the information
passed as a parameter to the PUT_LINE function.

Syntax:
SET SERVEROUTPUT [ON/OFFI;

30.9 CONTROL STATEMENTS

We can change the logical flow of statements within the PL/SQL block with a number
of control structures.

PL/SQL FUNDAMENTALS AND ITS STATEMENTS [653 |
Control structures can be:
4+ Conditional Control 4+ Iterative Control
+ Sequential Control

Conditional Control : It allows testing the truth of a condition and executing sections
of program depending on the condition that may be true or false.

Selection lteration Sequence

| e—

Figure 30.2. Control Structure

Iterative Control : It allows executing a section of program repeatedly as long as a
specified condition remains true.

Sequential Control : It allows ordering the sequence of processing sections of program.

30.10 CONDITIONAL CONTROL

There are following conditional control statements:

+ IF-THEN STATEMENT

+ IF- THEN - ELSE STATEMENT

+ IF-THEN-ELSIF STATEMENT (LADDER IF)
IF Statements

It is used to take alternative actions depending on circumstances. It execute a sequence
of statements conditionally.

There are three forms of IF statements: IF-THEN, IF-THEN-ELSE, and IF-THEN-ELSIF.
30.10.1 IF-THEN

The simplest form of IF statement associates a condition with a sequence of statements
enclosed by the keywords THEN and END IF (not ENDIF), as follows:

Syntax:

IF condition THEN
sequence_of_statements;
END IF;

SIMPLIFIED APPROACH TO DBMS
The sequence of statements is executed only if the condition yields TRUE. In either
case, control passes to the next statement.
Example:
IF a > b THEN
dbms_ouput.put_line(‘a is greater’);
END IF;

30.10.2 IF-THEN-ELSE

The second form of IF statement adds the keyword ELSE followed by an alternative
sequence of statements.

Syntax:

IF condition THEN
sequence_of_statements1;

ELSE
sequence_of_statements2;
END IF;
True False
v
THEN actions ELSE
(including further Ifs) (including furthersl}

!

Figure 30.3 IF-THEN-ELSE Structure

The sequence of statements in the ELSE clause is executed only if the condition yields
FALSE or NULL. Thus, the ELSE clause ensures that a sequence of statements is executed.

Example 30.3: To illustration of If-ELSE construct PL/SQL block to find
greater of two numbers. User will enter any two numbers and IF statement will
check for the greater among the entered number.

Solution:

DECLARE
A NUMBER := &ENTER_A;
B NUMBER := &ENTER_B;

PL/SQL FUNDAMENTALS AND ITS STATEMENTS | 655

BEGIN
IF A > B THEN
DBMS_OUTPUT.PUT_LINE(* A IS GREATER 9);
ELSE
DBMS_OUTPUT.PUT_LINE(* B IS GREATER ¥;
END IF;
END;

The THEN and ELSE clauses can include IF statements. That is, IF statements can be
nested, as the following example shows:

Example 30.4: To illustration of Nested If-Else construct PL/SQL block to
find greatest of three numbers

Solution:

DECLARE
A NUMBER :
B NUMBER :
C NUMBER :

BEGIN
IF A>B THEN
IF A>C THEN

DBMS_OUTPUT.PUT_LINE(‘A IS GREATEST');

&ENTER_A;
&ENTER_B;
&ENTER_C;

I el

ElSE
DBMS_OUTPUT.PUT_LINE(‘C IS GREATEST');
END IF;
ELSE
IF B>C THEN

DBMS_OUTPUT.PUT_LINE('B IS GREATEST');
ELSE
DBMS_OUTPUT.PUT_LINE(‘C IS GREATEST');
END IF;
END IF;

END;
30.10.3 IF-THEN-ELSIF

Sometimes we want to select an action from several mutually exclusive alternatives.

The third form of IF statement uses the keyword ELSIF (not ELSEIF) to introduce
additional conditions, as follows:

Syntax:

IF condition1 THEN
sequence_of_statements1;
ELSIF condition2 THEN
sequence_of_statements?2;
ELSE
sequence_of_statements3;
END IF;

656 SIMPLIFIED APPROACH TO DBMS

If the first condition yields FALSE or NULL, the ELSIF clause tests another condition.
An IF statement can have any number of ELSIF clauses; the final ELSE clause is optional.
Conditions are evaluated one by one from top to bottom.

If any condition yields TRUE, its associated sequence of statements is executed and
control passes to the next statement. If all conditions yield FALSE or NULL, the sequence
in the ELSE clause is executed. Consider the following example:

IF
condition

THEN actions ELSIF

condition

ELSE
condition

(THEN actionsj

v

Figure 30.4 IF-THEN-ELSIF Structure

Example 30.5: To illustration IF-THEN-ELSIF a PL/SQL block to calculate
addition, subtraction, multiplication and division of two numbers according to
user choice.

Solution:

DECLARE
A NUMBER:=&A;
B NUMBER:=&B;
C NUMBER,;
X NUMBER;
BEGIN
X:=& ENTER_CHOICE;
IF X=1 THEN
CZ=A+B;

PL/SQL FUNDAMENTALS AND ITS STATEMENTS 657

ELSIF X=2 THEN
C:=A-B;
ELSIF X=2 THEN
C:=A-B;
ELSIF X=3 THEN
C:=A"B;
ELSIF X=4 THEN
C:=A/B;
ELSE
DBMS_OUTPUT.PUT_LINE(‘NOT A VALID OPTION);
END IF;
DBMS_OUTPUT.F’UT_LINE(‘HESULT IS’ Il C);
END;

Description of the PL/SQL block code

If the value of X is 1 then addition is performed, if the value of x is 2 then subtraction
is performed, for X=3 multiplication is performed and for X=4 division operation is performed,
otherwise not a valid option message is displayed. Instead of using four IF statements, this
operation is performed with a single IF THEN ELSIF statement.

30.11 ITERATIVE CONTROL

A sequence of statements can be executed any number of times using the LOOP
constructs. The LOOP command initializes a group of commands indefinitely, or until a
condition forces a “break” in the LOOP and detours the execution of the program to another
place. The command is used with the EXIT command, which is responsible for interrupting
the LOOP execution. The LOOPS can be broadly classified into:

+ Simple Loop Statement + While Loop Statement
+ For Loop Statement

30.11.1 Simple LOOP Statement

The simplest form of LOOP statement is the basic (or infinite) loop, which encloses a
sequence of statements between the keywords LOOP and END LOQP, as follows:
LOOP
sequence_of_statements;
END LOOP;

With each iteration of the loop, the sequence of statements is executed, and then control
resumes at the top of the loop. If further processing is undesirable or impossible, you can use
an EXIT statement to complete the loop.

There are two forms of EXIT statements:

+ EXIT + EXIT-WHEN

EXIT Statement : The EXIT statement forces a loop to complete unconditionally.
When an EXIT statement is encountered, the loop completes immediately and control passes
to the next statement.

m SIMPLIFIED APPROACH TO DBMS
Example:
LOOP

IF credit_rating < 3 THEN

EXIT: — — exit loop immediately
END IF;
END LOOP;

...control resumes here

EXIT-WHEN Statement : The EXIT-WHEN statement allows a loop to complete
conditionally. When the EXIT statement is encountered, the condition in the WHEN clause
is evaluated. If the condition yields TRUE, the loop completes and control passes to the next
statement after the loop.

An example follows:

LOOP
EXIT WHEN c¢c>5; — — exit loop if condition is true

END LOOP;

Until the condition yields TRUE, the loop cannot complete. So, statements within the
loop must change the value of the condition. The EXIT-WHEN statement replaces a simple
IF statement. For example, compare the following statements:

IF ¢ >5 THEN | EXIT WHEN ¢ > 5;

EXIT; I

END IF; I

These statements are logically equivalent, but the EXIT-WHEN statement is easier to
read and understand.

Example 30.6: To illustrate a LOOP-EXIT a PL/SQL block to Print the numbers
from 1 to N. ‘

Solution:

DECLARE

VAR1 NUMBER :=1;

N NUMBER :=&ENTER_N;

BEGIN

LOOP

DBMS_OUTPUT.PUT_LINE(VAR1);
VAR1 = VAR1+1;

EXIT WHEN VAR1 > N ;

END LOOP;

END;

PL/SQL FUNDAMENTALS AND ITS STATEMENTS | 659 |
30.11.2 WHILE-LOOP Statement

The WHILE-LOOP statement associates a condition with a sequence of statements
enclosed by the keywords LOOP and END LOOP, as follows:

Syntax:

WHILE condition LOOP
sequence_of_statements;
END LOOP;

Before each iteration of the loop, the condition is evaluated. If the condition yields
TRUE, the sequence of statements is executed, then control resumes at the top of the loop.
If the condition yields FALSE or NULL, the loop is bypassed and control passes to the next
statement. An example follows:

WHILE i <= 10 LOOP
a:=n*i;

i=i+1;

END LOOP;

The number of iterations depends on the condition and is unknown until the loop completes.
Since the condition is tested at the top of the loop, the sequence might execute zero times.
In the last example, if the initial value of i is greater than 10, the condition yields FALSE and
the loop is bypassed. To ensure that a WHILE loop executes at least once, use an initialized
Boolean variable. A statement inside the loop must assign a new value to the Boolean
variable. Otherwise, you have an infinite loop.

Example 30.7: To ijliustration a PL/SQL block to Print the desired
multiplication table.

Solution:

DECLARE
TABLE_OF NUMBER :=&ENTER_TABLEOF :
COUNT NUMBER := 1;
RESULT NUMBER;

BEGIN
WHILE COUNT <= 10
LOOP
RESULT = TABLE_OF * COUNT ;
DBMS_OUTPUT.PUT_LINE(TABLE_OFII' * ICOUNT I’ = ‘IIRESULT);
COUNT := COUNT +1 ;
END LOOP;
END:;

Example 30.8: To illustration of WHILE LOOP with the use of SQL statements
PL/SQL block to calculate the SIMPLE INTEREST for same PRINCIPAL and TIME
but with different RATE OF INTEREST starting from 5% and to store each result
in a Simple_Interest table with following structure: (Principal, Rate, Time, Si).

m SIMPLIFIED APPROACH TO DBMS
Solution:

DECLARE
PRINCIPAL NUMBER := &ENTER_P;
RATE_OF_INT NUMBER = 5 ;
TIME_IN_YEAR NUMBER = 2;

SIMPLE_INT NUMBER(6,2);
BEGIN

WHILE RATE_OF_INT < =15

LOOP

SIMPLE_INT := (PRINClPAL*RATEP_OF_INT*TIMEJN_YEAR)H 00;
INSERT INTO SIMPLE_INTEREST(PRINCIPAL,RATE, TIME,SI)
VALUES(PRINC‘PAL,RATE_OF_INT,TIMEJN#YEAR,SHMPLEJNT);
RATE_OF_INT := RATE_OF_INT + 1 ;

END LOOP;

END;

30.11.3 FOR-LOOP Statement

Whereas the number of iterations through a WHILE loop is unknown until the loop
completes, the number of iterations through a FOR loop is known before the loop is entered.
FOR loops iterate over a specified range of integers. The range is part of an iteration scheme,
which is enclosed by the keywords FOR and LOOP. A double dot (..) serves as the range
operator. The syntax follows:

Syntax:
FOR counter IN [REVERSE] lower_bound..higher_bound LOOP

sequence_of_statements;
END LOOP;

The range is evaluated when the FOR loop is first entered and is never re-evaluated.
As the next example shows, the sequence of statements is executed once for each integer
in the range. After each iteration, the loop counter is incremented.

FOR i IN 1.3 LOOP — — assign the values 1,2,3 to |
sequence_of_statements; — — executes three times
END LOOP;

The following example shows that if the lower bound equals the higher bound, the
sequence of statements is executed once:

FOR i IN 3.3 LOOP — — assign the value 3 to i
sequence_of_statements; — — executes one time

END LOOP;

FOR-LOOP in Reverse Order

By default, iteration proceeds upward from the lower bound to the higher bound. However,
if you use the keyword REVERSE, iteration proceeds downward from the higher bound to

PL/SQL FUNDAMENTALS AND ITS STATEMENTS

the lower bound, as the below example shows. After each iteration, the loop counter is
decremented.

FOR i IN REVERSE 1..3 LOOP — — assign the values 3,21 to i
sequence_of_statements; — — executes three times
END LOOP;

NOTE: However, the loop counter increment (or decrement) must be 1. Some languages
provide a STEP clause, which lets you specify a different increment.

PL/SQL has no such structure, but you can easily build one. Consider the following example:

FOR j IN 5..15 LOOP — — assign values 5,6,7,... to |
IF MOD(j, 5) = 0 THEN — — pass multiples of 5
sequence_of_statements; — — j has values 5,10,15

END IF;

END LOOP;

This loop is logically equivalent to one, which has step value of 5. Within the sequence
of statements, the loop counter has only the values 5, 10, and 15.
Scope Rules

The loop counter is defined only within the loop. You cannot reference it outside the
loop. After the loop is exited, the loop counter is undefined, as the following example shows:

FOR ctr IN 1..10 LOOP

END LOOP;
sum := ctr - 1; — — illegal

We need not explicitly declare the loop counter because it is implicitly declared as a local
variable of type INTEGER.

Using the EXIT Statement

The EXIT statement allows a FOR loop to complete prematurely. For example, the
following loop normally executes ten times, but as soon as the b becomes greater than 999,
the loop completes no matter how many times it has executed:

FOR i IN 1..10 LOOP
b:=a*i;
EXIT WHEN b>999;

END LOOP;

GOTO statement and NULL are commonly used to change the sequence of statements.

30.12.1 GOTO Statement

The GOTO statement branches to a label unconditionally. The label must be unique
within its scope and must precede an executable statement or a PL/SQL block. When

m SIMPLIFIED APPROACH TO DBMS

executed, the GOTO statement transfers control to the labeled statement or block. In the
following example, you go to an executable statement farther down in a sequence of statements:

BEGIN
GOTO insert_row;

<<insert_row>>
INSERT INTO emp VALUES ..

END;
The GOTO statement must be followed by an executable statement.

For example:
LOOP

IF A>B then
Go to <<abc>>;
END IF;

<<abcs> — — it is illegal because it does not precede the executable statement.
END LOOP:
End;

30.12.2 NULL Statement

The NULL statement explicitly specifies inaction; it does nothing other than pass control
to the next statement.

Uses of NULL Statement:
It can improve readability.

IF A>B THEN
DBMS_OUTPUT.PUTLINE(A);
ELSE
NULL;
END IF;

The solution of illegal use of GOTO statement is with the NULL statement as shown below:
LOOR

IF A>B THEN
GO TO <<ABC>>;
END IF;
<<abcs>> /* It is correct now because it is followed by an executable statement
NULL without changing the meaning of the block.*/
NULL;
END LOOP;

PL/SQL FUNDAMENTALS AND ITS STATEMENTS 663 |

FLASH BACK

SQL stands for Procedural Language/SQL. PL/SQL is an extension of the SQL language.
We can say it is the superset of the Structured Query Language specialized for use in the
Oracle database. Because it is Procedural language, it eliminates many restrictions of the
SQL Language. PL/SQL is a completely portable, high performance transaction processing
language, which Supports the declaration and manipulation of object types and collections,
external functions and procedures, packages, Triggers and Cursors.

The PL/SQL engine executes the PL/SQL Blocks. The PL/SQL engine executes only the
procedural statements and sends the SQL statements to the SQL statement executor in
the Oracle Server. PL/SQL block consists of three sections:

Declare
— Declare variables and constants
Begin
— Process SQL statements
Exception
— Error handlers
End;
The PL/SQL essential language elements can be grouped as follows :
+ Operators, indicators and punctuation + Identifiers
4+ Literals 4 Comments

+ Expressions and comparisons
Data types and Declarations Some commonly used data types of PL/SQL are:

+ NUMBER 4 CHAR

4 VARCHAR 4+ DATE

4+ BOOLEAN 4 LONG

4+ LONG RAW 4 LOB

The following are the types of attributes, which are supported by PL/SQL.
4+ %TYPE + %ROWTYPE

%type attribute is used when declaring variables that refer to the database columns and
%rowtype attribute provides a record type that represents a row in a table.
DBMS_OUPUT.PUT_LINE is used to Display user Messages on the Screen.

Control structures can be:
4 Conditional Control 4 iterative Control
4 Sequential Control

Conditional Control: It allows testing the truth of a condition and executing sections of
program depending on the condition that may be true or false.

Iterative Control: It allows executing a section of program repeatedly as long as a specified
condition remains true.

Sequential Control: it allows ordering the sequence of processing sections of program.
There are following conditional control statements:

m SIMPLIFIED APPROACH TO DBMS

4 |IF-THEN STATEMENT 4 IF- THEN — ELSE STATEMENT
4 IF-THEN-ELSIF STATEMENT (LADER IF)

lterative Control: A sequence of statements can be executed any number of times using
the LOOP constructs. The LOOPS can be broadly classified into:

4 Simple Loop Statement
4 While Loop Statement
4 For Loop Statement

Sequential Control: GOTO statement and NULL are commonly used to change the sequence
of statements. The GOTO statement branches to a label unconditionally. The NULL statement
explicitly specifies inaction; it does nothing other than pass control to the next statement.

. What are the problems of SQL and how they are solved by PL/SQL?

What are the advantages of PL/SQL?

Explain the architecture of PL/SQL?

. What are the features of Oracle?

What are the main blocks of a PL/SQL code? Explain the importance of each?
What is operator precedence in PL/SQL?

. How we can issue comments in PL/SQL code?

. What are the data type of PL/SQL? Explain with examples.

How we can declare variables and constants?

. How we can assign the values to PL/SQL variables? Explain with examples.

. How we can display the output in PL/SQL?

_ \What are the Control Statements in PL/SQL? Explain with examples.

_ What are the Conditional control statements in PL/SQL? Explain with examples.
. What are the Looping statements in PL/SQL? Explain with examples.

. What are the Sequential statements in PL/SQL? Explain with examples.

. Write a PL/SQL code to find the factorial of any number.

. Write a PL/SQL code to check even or odd of a number.

. Write a PL/SQL code to calculate the Simple Interest.

. Write a PL/SQL code to calculate the Electricity bill.

. Write a PL/SQL code to calculate the Net Salary of an employee.

_ Write a PL/SQL code to calculate the Telephone bill and store the result in a database.

HANDS ON SESSION
1. PL/SQL is a of SQL statements

(a) Subset (b) Superset

(c) Powerset (d) None of these

©C®NO O HSWN =

P T S S G S S I
= 0O O ~NOOOGRWND=0

PL/SQL FUNDAMENTALS AND ITS STATEMENTS

2

10.

11.

12.

13.

14.

15.

16.

. A PL/SQL statement is terminated with
(a) END statement (b) STOP Statement
(c) BREAK statement (d) None
. The VARCHAR2 datatype is used to store
(a) Variable length character data (b) Fixed length character data
(c) Depends (daé&b
- Which operator is used for declaring variables that refer to the database columns
(a) + (b) % () - (d)~
- % ROWTYPE attribute provides a record type that represents
(a) Row in a Table (b) Columns in a Table
(c) Field in a Table (d) All
- The two forms of EXIT statements
(@) EXIT & EXIT WHY (b) EXIT WHEN & EXIT
(c) EXIT HOW & EXIT (d) All
- Which statement are used to change the sequence of statements
(a) GOTO (b) NULL (c) None of these (d) Both a & b
. LONGRAW datatype is used to store
(a) Char Data & strings (b) Binary Data & strings
(c) int Data & strings (d) float Data & strings
. Which of the following is optional in PL/SQL Block
(a) Begin (b) Declare (c) Exception (d) End
(e) b ,c (f) None
Which of the following is having problem
(a) temp1, temp2 number(5,2) ; (b) temp1 number(5,2), temp2 number(5,2);

(c) temp1 number(5,2); temp2 number(5,2);(d) None of the above has problem
(e) All of above has problem

Which of the following is not an oracle Data type

(a) CHAR (b) NCHAR (c) VARCHAR (d) VARCHAR2
(e) UROWID (f) TIME :
Which of the following is not a right way of comments

(a) start with double hyphen — (b) start with /* and end with */

(c) Start with /* and end with /* (d) Start with */ and end with */
Which of the following is not a Oracle reserve word.

(a) EXCLUSIVE (b) INCREMENT (c) CASE (d) PRIOR
Which of the following are the variable attributes

(a) %type (b) %Rowtype (c) %rowcount (d) %count
Which of the following is the assignment operator in Oracle

(@) = (b)'= () — (d) none
DBMS_OUTPUT is a

(a) Function (b) Procedure

(c) User defined Package (d) System Supplied Package

m SIMPLIFIED APPROACH TO DBMS

17.

18.

19.

20.

21.

22.

23.

24.

i

» { Solution Kevs |

1. Ah(.b) 2.(a 3.(@ 4(® 5@ 6. (b) 7.(d) 8 (a&b) 9. (e
10. (c&d)11.) 12. (c&d) 13. (¢) 14. (agb) 15.(b) 16.(d) 17. (@) 18 (0)
19. (b) 20.(@) 21.(b) 22.(d) 23.(b) 24. (b&d)

What is default format of DATE type data in Oracle

(a) dd-mon-yyyy (b) dd/mm/yyyy (c) mon-dd-yy (d) yyyy-dd-mon
Which of the following is a correct value that can be stored in varible declared as below
A number(5,1)

(a) 34567.2 (b) 3456.4 (c) 3434.34 (d) 1.3232

Which section of the PL/SQL block handles errors and abnormal conditions?

(a) Declaration (b) Exception (c) Executable (d) Anonymous block
What is the mandatory clause in a select statement when used inside a PL/SQL block.
(a) INTO (b) Where (c) Order By (d) Group by

In which section of PL/SQL block is a constant assigned value?

(a) Executable (b) declaration

(c) Exception (d) declaration or executable sections.
Why does the following statement in the declaration section fail :

PRODUCT_IN_STOCK BOOLEAN: = ‘TRUE;

(a) Assignment operation is not permitted in the declaration section.

(b) The size/width for the variable is not defined.

(c) Boolean is not a valid Data type supported by PL/SQL.

(d) A Boolean variable cannot be assigned a character string value.

What type of constant can be defined when you declare a variable?

(a) Check (b) Not Null

(c) Check and Not Null (d) no constraint

Choose two answers that are true. A variable is defined as Y%etype.

(a) if the underlying table column data type changes, PL/SQL code needs to be changed.
(b) You do not have to know the data type or the precision of the column.

(c) Only character variables can be defined using Y%type.

(d) You need not be concerned about change that may be made to column definitions

00000

